Spectroscopic analysis of charge transfer complex formation between neuroleptics and iodine.
نویسندگان
چکیده
منابع مشابه
Spectroscopic Study of Charge Transfer Complexes of Dibenzo-24-crown-8 (DB24C8) with Iodine in Three Chlorinated Solvents
Charge Transfer (CT) complexes formed between dibenzo-24-crown-8 (DB24C8) as an electron donor with the σ-electron acceptor iodine (I2) in chloroform, dichloromethane, and 1,2-dichloroethane solutions have been studied by different spectroscopic techniques at room temperature. The spectral studies of the complexes were det...
متن کاملDetermination of Trimethoprim Based on Charge-Transfer Complexes Formation
A spectrophotometric study concerning the interaction between Trimethoprim (TMP) ,Sulfamethoxazole (SFMx), as n-donor and 2,3-dichloro-5,6- dicyano-P-benzoquinine (DDQ) and chloranilic acid (CA) as π-acceptor were been performed at 25°C. The results of interaction of CA and DDQwith TMP indicate the formation of a 1:1, 1:2, charge transfer complexes through non equilibrium reactions. In the case...
متن کاملSpectroscopic Studies on Charge-Transfer Complexation of Iodine with Dibenzo-15-crown-5 and Benzo-12-crown-4 in Chloroform, Dichloromethane and 1,2-Dichloroethane
The formation of charge-transfer complexation between dibenzo-15-crown-5 (DB15C5) and benzo-12-crown-4 (B12C4) (Donor) and iodine is investigated spectrophotometrically in three chlorinated solvents,chloroform, dichloromethane (DCM) and 1,2-dichloroethane (DCE) solution at 25°C. The change in polarityof the solvent also doesn’t affect the stoichiometry of the complexes. Values of formation cons...
متن کاملDisulfide bond formation involves a quinhydrone-type charge-transfer complex.
The chemistry of disulfide exchange in biological systems is well studied. However, the detailed mechanism of how oxidizing equivalents are derived to form disulfide bonds in proteins is not clear. In prokaryotic organisms, it is known that DsbB delivers oxidizing equivalents through DsbA to secreted proteins. DsbB becomes reoxidized by reducing quinones that are part of the membrane-bound elec...
متن کاملUnprecedented host-induced intramolecular charge-transfer complex formation.
For the first time, host-induced intramolecular charge-transfer complex formation in a guest containing both an electron donor and an electron acceptor is demonstrated in the cucurbit[8]uril cavity, leading to unusual back-folding of the guest molecule.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical and Pharmaceutical Bulletin
سال: 1989
ISSN: 0009-2363,1347-5223
DOI: 10.1248/cpb.37.151